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ABSTRACT
We develop a semiparametric Bayesian approach to missing outcome data in longitudinal studies in the
presence of auxiliary covariates. We consider a joint model for the full data response, missingness, and
auxiliary covariates. We include auxiliary covariates to “move”the missingness “closer”to missing at random.
In particular, we specify a semiparametric Bayesian model for the observed data via Gaussian process
priors and Bayesian additive regression trees. These model specifications allow us to capture nonlinear and
nonadditive effects, in contrast to existing parametric methods. We then separately specify the conditional
distribution of the missing data response given the observed data response, missingness, and auxiliary
covariates (i.e., the extrapolation distribution) using identifying restrictions. We introduce meaningful
sensitivity parameters that allow for a simple sensitivity analysis. Informative priors on those sensitivity
parameters can be elicited from subject-matter experts. We use Monte Carlo integration to compute the
full data estimands. Performance of our approach is assessed using simulated datasets. Our methodology
is motivated by, and applied to, data from a clinical trial on treatments for schizophrenia. Supplementary
materials for this article are available online.
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1. Introduction

In longitudinal clinical studies, the research objective is often to
make inference on a subject’s full data response conditional on
covariates that are of primary interest; for example, to calculate
the treatment effect of a test drug at the end of a study. However,
the vector of responses for a research subject is often incomplete
due to dropout. Dropout is typically nonignorable (Rubin 1976;
Daniels and Hogan 2008) and in such cases the joint distribution
of the full data response and missingness needs to be modeled.
In addition to the covariates that are of primary interest, we
would often have access to some auxiliary covariates (often
collected at baseline) that are not desired in the model for
the primary research question. Such variables can often pro-
vide information about the missing responses and missing data
mechanism. For example, missing at random (MAR) (Rubin
1976) might only hold conditionally on auxiliary covariates
(Daniels and Hogan 2008). In this setting, auxiliary covariates
should be incorporated in the joint model as well, but we should
proceed with inference unconditional on these auxiliary covari-
ates.

The full data distribution can be factored into the observed
data distribution and the extrapolation distribution (Daniels
and Hogan 2008). The observed data distribution can be iden-
tified by the observed data, while the extrapolation distribu-
tion cannot. Identifying the extrapolation distribution relies on
untestable assumptions such as parametric models for the full
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data distribution or identifying restrictions (Linero and Daniels
2018). Such assumptions can be indexed by unidentified param-
eters called sensitivity parameters (Daniels and Hogan 2008).
The observed data do not provide any information to estimate
the sensitivity parameters. Under the Bayesian paradigm, infor-
mative priors can be elicited from subject-matter experts and be
placed on those sensitivity parameters. Finally, it is desirable to
conduct a sensitivity analysis (Daniels and Hogan 2008; National
Research Council 2011) to assess the sensitivity of inferences
to such assumptions. The inclusion of auxiliary covariates can
ideally reduce the extent of sensitivity analysis that is needed for
drawing accurate inferences.

In this article, we propose a Bayesian semiparametric model
for the joint distribution of the full data response, missing-
ness, and auxiliary covariates. We use identifying restrictions to
identify the extrapolation distribution and introduce sensitivity
parameters that are meaningful to subject-matter experts and
allow for a simple sensitivity analysis.

1.1. Missing Data in Longitudinal Studies

Literature about longitudinal missing data with nonignorable
dropout can be mainly divided into two categories: likelihood-
based and moment-based (semiparametric). Likelihood-based
approaches include selection models (e.g., Heckman 1979;
Diggle and Kenward 1994; Molenberghs, Kenward, and Lesaffre
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1997), pattern mixture models (e.g., Little 1993; Little 1994;
Hogan and Laird 1997), and shared-parameter models (e.g., Wu
and Carroll 1988; Follmann and Wu 1995; Pulkstenis, Ten Have,
and Landis 1998; Henderson, Diggle, and Dobson 2000). These
three types of models differ from how the joint distribution of
the response and missingness is factorized. Likelihood-based
approaches often make strong parametric model assumptions
to identify the full data distribution. For a comprehensive review
see, for example, Daniels and Hogan (2008) or Little and Rubin
(2014). Moment-based approaches, on the other hand, typically
specify a semiparametric model for the marginal distribution
of the response, and a semiparametric or parametric model for
the missingness conditional on the response. Moment-based
approaches are in general more robust to model misspecification
since they make minimal distributional assumptions (see, e.g.,
Robins, Rotnitzky, and Zhao 1995; Rotnitzky, Robins, and
Scharfstein 1998; Scharfstein, Rotnitzky, and Robins 1999;
Tsiatis 2007; Tsiatis, Davidian, and Cao 2011).

There are several recent papers under the likelihood-based
paradigm that are relevant to our approach, such as Wang et al.
(2010), Linero and Daniels (2015), Linero (2017), and Linero
and Daniels (2018). These papers specify Bayesian semipara-
metric or nonparametric models for the observed data dis-
tribution, and thus have similar robustness to moment-based
approaches. However, existing approaches do not utilize infor-
mation from auxiliary covariates. We will highlight more of
our contribution and distinction compared to existing methods,
in particular Linero and Daniels (2015) and Linero (2017),
after we have introduced the required notation. In the pres-
ence of auxiliary covariates, Daniels, Wang, and Marcus (2014)
model longitudinal binary responses using a parametric model
under ignorable missingness. Our goal is to develop a flexible
Bayesian approach to longitudinal missing data with nonig-
norable dropout that also allows for incorporating auxiliary
covariates. As mentioned earlier, the reason to include auxiliary
covariates is that we anticipate it will make the missingness
“closer” to MAR.

1.2. Notation and Terminology

We introduce some notation and terminology as follows. Con-
sider the responses for a subject i at J time points. Let Y i =
(Yi1, . . . , YiJ) be the vector of longitudinal outcomes that was
planned to be collected, Ȳ ij = (Yi1, . . . , Yij) be the history of
outcomes through the first j times, and Ỹ ij = (Yi,j+1, . . . , YiJ) be
the future outcomes after time j. Let Si denote the dropout time
or dropout pattern, which is defined as the last time a subject’s
response is recorded, that is, Si = max{j : Yij is observed}.
Missingness is called monotone if Yij is observed for all j ≤
Si, and missingness is called intermittent if Yij is missing for
some j < Si. For monotone missingness, Si captures all the
information about missingness. In the following discussion, we
will concern ourselves with monotone missingness. Dropout
is called random (Diggle and Kenward 1994) if the dropout
process only depends on the observed responses, that is, the
missing data are MAR; dropout is called informative if the
dropout process also depends on the unobserved responses,
that is, the missing data are missing not at random (MNAR).

We denote by Xi the covariates that are of primary interest,
and V i = (Vi1, . . . , ViQ) the Q auxiliary covariates that are
not of primary interest. Those auxiliary covariates should be
related to the outcome and missingness. The observed data for
subject i is (Ȳ iSi , Si, V i, Xi), and the full data is (Y i, Si, V i, Xi). In
general, we are interested in expectation of the form E[t(Y i) |
Xi], where t denotes some functional of Y i. Finally, denote by
p(y, s, v | x, ω) the joint model for the full data response, miss-
ingness, and auxiliary covariates conditional on the covariates
that are of primary interest, where ω represents the parameter
vector.

1.3. The Schizophrenia Clinical Trial

Our work is motivated by a multicenter, randomized, double-
blind clinical trial on treatments for schizophrenia. The trial
data were previously analyzed in Linero and Daniels (2015),
which took a Bayesian nonparametric approach, but did not uti-
lize information from the auxiliary covariates. For this clinical
trial, the longitudinal outcomes are the positive and negative
syndrome scale (PANSS) scores, which measure the severity of
symptoms for patients with schizophrenia (Kay, Flszbein, and
Opfer 1987). The outcomes are collected at J = 6 time points
corresponding to baseline, day 4 after baseline, and weeks 1,
2, 3, and 4 after baseline. The possible dropout patterns are
Si = 2, 3, 4, 5, 6. The covariate of primary interest is treatment,
with Xi = T, A, or P corresponding to test drug, active control
or placebo, respectively. In addition, we have access to Q = 7
auxiliary covariates including age, onset (of schizophrenia) age,
height, weight, country, sex, and education level.

The dataset consists of N = 204 subjects, with 45 subjects for
the active control arm, 78 subjects for the placebo arm, and 81
subjects for the test drug arm. Detailed individual trajectories
and mean responses over time for the three treatment arms
can be found in Appendix Figure A.1. The dropout rates are
33.3%, 20.0%, and 25.6% for the test drug, active control and
placebo arms, respectively. Subjects drop out for a variety of rea-
sons. Some reasons including adverse events (e.g., occurrence
of side effects), pregnancy and protocol violation are thought
to be random dropouts, while the other reasons such as disease
progression, lack of efficacy, physician decision and withdraw by
patient are thought to be informative dropouts. It is ideal to treat
those reasons differently while making inference. The informa-
tive dropout rates are 29.6%, 15.6%, and 25.6% for the test drug,
active control, and placebo arms, respectively. Detailed dropout
rates for each dropout pattern can be found in Appendix Table
A.1. The dataset has a few intermittent missing outcomes (1 for
the test drug arm, 1 for the active control arm, and 2 for the
placebo arm). We focus our study on monotone missingness and
assume partial ignorability (Harel and Schafer 2009) for the few
intermittent missing outcomes.

The goal of this study is to estimate the change from baseline
treatment effect,

rx = E[Yi6 − Yi1 | Xi = x].

In particular, the treatment effect improvements over placebo,
that is, rT − rP and rA − rP, are of interest.
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1.4. Overview and Contribution

We stratify the model by treatment, and suppress the treatment
variable x to simplify notation hereafter. The extrapolation fac-
torization (Daniels and Hogan 2008) is

p(y, s, v | ω) = p(ỹs | ȳs, s, v, ωE)p(ȳs, s, v | ωO),

where the extrapolation distribution, p(ỹs | ȳs, s, v, ωE), is not
identified by the data in the absence of uncheckable assumptions
or constraints on the parameter space. The observed data distri-
bution p(ȳs, s, v | ωO) is identified and can be estimated semi-
parametrically or nonparametrically. We factorize the observed
data distribution based on pattern-mixture modeling (Little
1993),

p(ȳs, s, v | ωO) = p(ȳs | s, v, π)p(s | v, ϕ)p(v | η), (1)

where we assume distinct parameters ωO = (π , ϕ, η) parame-
terizing the response model, the missingness and the distribu-
tion of the auxiliary covariates, respectively.

The model specification (1) brings two challenges:

1. For the models p(ȳs | s, v, π) and p(s | v, ϕ), it is unclear
how the auxiliary covariates are related to the responses
and dropout patterns. For example, the auxiliary covariates
contain height and weight, which might not have a linear and
additive effect on the responses. For example, the responses
might have a linear relationship with the body mass index,
which is calculated by weight/height2.

2. For the model p(ȳs | s, v, π), the observed patterns are sparse.
For example, the dropout pattern Si = 2 for the active control
arm has only 1 observation.

To mitigate challenge 1, we specify semiparametric models
for p(ȳs | s, v, π) and p(s | v, ϕ) via Gaussian process (GP) priors
and Bayesian additive regression trees (BART), respectively.
Such models, although still making some parametric assump-
tions, are highly flexible and robust to model misspecification.
To address challenge 2, we use informative priors such as autore-
gressive (AR) and conditional autoregressive (CAR) priors to
share information across neighboring patterns. Detailed model
specifications will be described in Section 2.

We would like to emphasize the distinction between our
approach and the approaches proposed in Linero and Daniels
(2015) and Linero (2017). The earlier works by Linero and
Daniels and Linero specified the observed data distribution (1)
based on a working model for the full data constructed as a
Dirichlet process mixture of selection models, that is, p∗(y, s |
ω) = ∫

p(y | θ1)p(s | y, θ2)F(dθ) with F following a
Dirichlet process; the approaches did not consider covariates
but they could be added in a very simple way by introducing
them independently (from y and s and from each other in the
Dirichlet process mixture) as mentioned in the discussion of
Linero (2017). These approaches can thus accommodate (auxil-
iary) covariates but they were not constructed to include them in
a careful, efficient way. In contrast, the proposed approach was
designed specifically to allow (auxiliary) covariates and to esti-
mate an average (mean) treatment effect. To address the former,
we use a pattern-mixture model parameterization, and exploit
the expected structure including sparse patterns and similar
covariate effects across patterns and over time via GP, AR/CAR

priors, and shrinkage priors. Later we will show through simu-
lation studies that our approach indeed performs better than the
approaches proposed in Linero and Daniels (2015) and Linero
(2017) with a simple extension that accommodates auxiliary
covariates.

The remainder of this article is structured as follows. In
Section 2, we specify Bayesian (semiparametric) models for
(1). In Section 3, we use identifying restrictions to identify the
extrapolation distribution. In Section 4, we describe our pos-
terior inference and computation approaches. In Section 5, we
present simulation studies to validate our model and compare
with results using other methods. In Section 6, we apply our
method to a clinical trial on treatments for schizophrenia. We
conclude with a discussion in Section 7.

2. Probability Model for the Observed Data

2.1. Model for the Observed Data Responses Conditional
on Pattern and Auxiliary Covariates

We define the model for observed data responses conditional on
drop out time and auxiliary covariates, that is, p(ȳs | s, v, π), as
follows. The distribution p(ȳs | s, v, π) can be factorized as

ps
(
ȳs | v, π

)
= ps(ys | ȳs−1, v, π) · · · ps(y2 | y1, v, π)ps(y1 | v, π), (2)

where the subscript s corresponds to conditioning on dropping
out pattern S = s.

We assume(
Yj | ȳj−1 = ȳj−1, s, v, a0, a, π

)

=
{

a0(v, s) + ε1s, j = 1;
a(yj−1, v, j, s) + ȳT

j−2φjs + εjs, j ≥ 2,
(3)

where j = 1, . . . , s; s = 2, . . . , J. Here a0 and a are stochastic
processes indexed by U0 = V × J0 and U = Y × V × J ,
respectively, where V is the state space of v, J0 = {2, . . . , J} is
the state space of s, J ⊂ {1, . . . , J}2 is the state space of (j, s),
and Y is the state space of yj−1. Furthermore, φjs is the vector
of lag coefficients (of order 2 and above) for each time/pattern,
and εjs’s are independent Gaussian errors,

εjs ∼ N(0, σ 2
js).

To have a flexible mean model for Yj as a function of previous
response and covariates, we place GP priors (Rasmussen and
Williams 2006) on a0 and a,

a0(v, s) ∼ GP
[
μ0(v, s), C0(v, s; v′, s′)

]
;

a(yj−1, v, j, s) ∼ GP
[
μ(yj−1, v, j, s), C(yj−1, v, j, s;

y′
j′−1, v′, j′, s′)

]
,

with mean functions μ0: U0 → R and μ: U → R and
covariance functions C0: U0 × U0 → R

+ and C: U × U → R
+,

respectively. Specifically,

μ0(v, s) = vTβ0s + b1s;
μ(yj−1, v, j, s) = ψjsyj−1 + vTβs + bjs,

(4)
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and

C0(v, s; v′, s′) = κ2
0 D0(v, s; v′, s′) + κ̃2

0 I(v, s; v′, s′);
C(yj−1, v, j, s; y′

j′−1, v′, j′, s′)

= κ2 D(yj−1, v, j, s; y′
j′−1, v′, j′, s′)

+ κ̃2 I(yj−1, v, j, s; y′
j′−1, v′, j′, s′).

(5)

We use two different stochastic processes a0 and a for j = 1
and j ≥ 2. The reason is that for j = 1, a0 represent the mean
initial response with no past; for j ≥ 2, a represents the mean at
subsequent responses, with a past. In the mean functions (4), β0s
and βs are the vectors of regression coefficients of the auxiliary
covariates, ψjs is the lag-1 coefficient, and bjs is the time/pattern
specific intercepts. In the covariance functions (5), D0(a; b) and
D(a; b) are the exponential distances between a and b, defined
by

D0(v, s; v′, s′) = exp
[

− ‖v − v′‖2
2

2γ 2
v0

− |s − s′|
γs0

]
,

D(yj−1, v, j, s; y′
j′−1, v′, j′, s′)

= exp
[

−
‖y

j−1
− y′

j′−1
‖2

2

2γ 2
y

− ‖v − v′‖2
2

2γ 2
v

− |j − j′|
γj

− |s − s′|
γs

]
.

Here κ2
0 , γv0, γs0, κ̃2

0 , κ2, γy, γv, γj, γs, κ̃2 are the hyperpa-
rameters. Details about the hyper-priors or choices of these
hyperparameters are described in Appendix A.2. The values
v, y

j−1
, j, and s are standardized values for v, yj−1, j, and s

(details in Appendix A.2). For categorical covariates, the dis-
tance between v and v′ is calculated by counting the number
of different values. In addition, in (5), I(a; b) is the Kronecker
delta function that takes the value 1 if a = b and 0 otherwise.
The function I(a; b) is used to introduce a small nugget for
the diagonal covariances, which overcomes near-singularity of
the covariance matrices and improves numerical stability. The
GPs flexibly model the relationship between auxiliary covariates
and the previous response with the current response (Yj) and
accounts for possibly nonlinear and nonadditive effects in the
auxiliary covariates and previous response.

For the noise variance σ 2
js , we assume an inverse Gamma

shrinkage prior,

σ 2
js | νσ

iid∼ IG(λσ , λσ νσ ), j = 1, . . . , s, s = 2, . . . , J,

with E(1/σ 2
js) = 1/νσ and var(1/σ 2

js) = 1/λσ ν2
σ . This prior

shrinks the time/pattern specific variances to a common value,
νσ . We put hyper-priors on λσ and νσ ,

λσ − 2 ∼ IG(λ
λσ
1 , λλσ

2 ), νσ ∼ Gamma(λνσ
1 , λνσ

2 ),

where we assume λσ > 2 to impose more shrinkage and
borrowing of information.

Next, we consider the parameters in the mean functions (4).
We allow the regression coefficients of the auxiliary covariates
to vary by pattern. However, it is typical to have sparse patterns.
As a result, we consider an informative prior that assumes

regression coefficients for neighboring patterns to be similar.
In particular, we specify AR(1) type priors on β0s and βs. Let
β0 = (β02, β03, . . . , β0J) and β = (β2, β3, . . . , βJ) denote the
coefficient vectors for the auxiliary covariates in Equation (4).
We assume

β0 ∼ N
[

Xβ β̃0, σ 2
β0
β(ρ0)

]
, β ∼ N

[
Xβ β̃ , σ 2

β
β(ρ)
]

,

where XT
β = (I, I, . . . , I), β̃0 and β̃ are the prior means for β0s

and βs, respectively, and σ 2
β0


β(ρ0) and σ 2
β
β(ρ) are the AR(1)

type covariance matrices. Details and hyper-priors on the hyper-
parameters are described in Appendix A.2. The time/pattern
specific intercepts are given CAR type priors (De Oliveira 2012;
Banerjee, Carlin, and Gelfand 2014) as we expect them to be
similar for neighboring patterns/times. Let b0 = (b12, b13,
. . ., b1J) and b = (b22; b23, b33; . . . ; b2J , . . ., bJJ) denote the
time/pattern-specific intercepts in Equation (4). We assume

b0 ∼ N
(

1b̃0, σ 2
b0

(I − γb0 Wb0)
−1Nb0

)
,

b ∼ N
(

1b̃, σ 2
b (I − γbWb)

−1Nb
)

,

where b̃0 and b̃ are the prior means for b0 and b, respec-
tively, and σ 2

b0
(I − γb0 Wb0)

−1Nb0 and σ 2
b (I − γbWb)

−1Nb are
the CAR type covariance matrices. Details in Appendix A.2.
The time/pattern specific lag-1 coefficients are given CAR type
priors similar to the priors on bjs for the same reason. Let
ψ = (ψ22; ψ23, ψ33; . . . ; ψ2J , . . . , ψJJ) denote the time/pattern-
specific coefficient vector for the lag-1 responses in Equation (4).
We assume

ψ ∼ N
(

1ψ̃ , σ 2
ψ(I − γψWψ)−1Nψ

)
,

where ψ̃ is the prior mean for ψ , and σ 2
ψ(I−γψWψ)−1Nψ is the

CAR type covariance matrix. Again, more details in Appendix
A.2. We complete the model with a prior for the higher-order
(≥2) lag coefficients φjs. Note that we assume the effect of
higher-order lag responses on current response is linear. We do
not include Ȳ j−2 in a(·) as the dimension of Ȳ j−2 varies for
different time j. We expect to capture most of the nonlinear and
nonadditive effects from lagged responses by including Yj−1 in
a(·) since we expect most of the temporal effects come from the
lag-1 response. We simply put normal priors with more prior
mass around 0 to indicate the prior belief that higher-order lags
have less impact on current response. Specifically,

φjs ∼ N(0, σ 2
φ I), σ 2

φ ∼ IG(λ
φ
1 , λφ

2 ),

with λ
φ
1 > λ

φ
2 .

2.2. Model for the Pattern Conditional on Auxiliary
Covariates

We model the hazard of dropout at time j with BART (Chipman,
George, and McCulloch 2010),

p(S = j | S ≥ j, v, ϕ) = FN(fj(v)),
where FN denotes the standard normal cdf (probit link), and
fj(v) is the sum of tree models from BART. The BART model
captures complex relationships between auxiliary covariates and
dropout including interactions and nonlinearities. We use the
default priors for fj(·) given in Chipman, George, and McCul-
loch (2010).
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2.3. Model for the Auxiliary Covariates

We use a Bayesian bootstrap (Rubin 1981) prior for the distri-
bution for v. Suppose v can only take the N discrete values that
we observed, V ∈ {v1, . . . , vN}. The probability for each is

p(V = vi | η) = ηi, (6)

where
∑N

i=1 ηi = 1. We place a Dirichlet distribution prior on
η,

(η1, . . . , ηN) ∼ Dir(δη, . . . , δη).

3. The Extrapolation Distribution

The extrapolation distribution for our setting can be sequen-
tially factorized as

ps(ỹs | ȳs, v, ωE) = ps(ys+1 | ȳs, v, ωE)

· ps(ys+2 | ȳs+1, v, ωE) · · · ps(yJ | ȳJ−1, v, ωE). (7)

The extrapolation distribution is not identified by the
observed data. To identify the extrapolation distribution, we
use identifying restrictions that express the extrapolation
distribution as a function of the observed data distribution; see
Linero and Daniels (2018) for a comprehensive discussion. For
example, MAR (Rubin 1976) is a joint identifying restriction
that completely identifies the extrapolation distribution. It is
shown in Molenberghs et al. (1998) that MAR is equivalent
to the available case missing value (ACMV) restriction in the
pattern mixture model framework. The same statement is true
when conditional on V , in which case MAR is referred to as
auxiliary variable MAR (A-MAR) (Daniels and Hogan 2008).
ACMV sets

pk(yj | ȳj−1, v, ωE) = p≥j(yj | ȳj−1, v, π),

for k < j and 2 ≤ j < J, where the subscript ≥ j indicates
conditioning on S ≥ j. The latter involves averaging ps(·) with
respect to the missingness prior on s.

When the missingness is not at random, a partial identifying
restriction (Linero and Daniels 2018) is the missing nonfuture
dependence (NFD) assumption (Kenward, Molenberghs, and
Thijs 2003). NFD states that the probability of dropout at time j
depends only on ȳj+1. Similarly, when conditional on V , auxil-
iary variable NFD (A-NFD) assumes

p(S = j | ȳJ , v, ω) = p(S = j | ȳj+1, v, ω).

Within the pattern-mixture framework, NFD is equivalent to
the nonfuture missing value (NFMV) restriction (Kenward,
Molenberghs, and Thijs 2003). Under A-NFD, we have

pk(yj | ȳj−1, v, ωE) = p≥j−1(yj | ȳj−1, v, π), (8)

for k < j−1 and 2 < j ≤ J. NFMV leaves one conditional distri-
bution per incomplete pattern unidentified: ps(ys+1 | ȳs, v). To
identify ps(ys+1 | ȳs, v), we assume a location shift τs+1 (Daniels
and Hogan 2000),
[
Ys+1 | Ȳs, S = s, V , ω

] d= [
Ys+1 + τs+1 | Ȳs, S ≥ s + 1, V , ω

]
,

(9)

where d= denotes equality in distribution, and τs+1 measures
the deviation of the unidentified distribution ps(ys+1 | ȳs, v)

from ACMV. In particular, ACMV holds when τs+1 = 0; τs+1
is a sensitivity parameter (Daniels and Hogan 2008). To help
calibrate the magnitude of τs+1, we set[

τs+1 | Ȳs = ȳs, V = v
] = τ̃ · �s+1(ȳs, v), (10)

where �s+1(ȳs, v) is the standard deviation of (Ys+1 | ȳs, s, v)

under ACMV, and τ̃ represents the number of standard devia-
tions that ps(ys+1 | ȳs, v) is deviated from ACMV. Similar strate-
gies to calibrate sensitivity parameters based on the observed
data can be found in Daniels and Hogan (2008) and Kim et al.
(2017). Importantly, note that, based on this calibration, for a
fixed τ̃ we would have a smaller � using auxiliary covariates
and thus a smaller deviation from ACMV, in comparison to
unconditional on V .

4. Posterior Inference and Computation

4.1. Posterior Sampling for Observed Data Model
Parameters

We use a Markov chain Monte Carlo (MCMC) algorithm to
draw samples from the posterior w(l)

O
iid∼ p(wO | {ȳisi , si, vi}N

i=1),
l = 1, . . . , L. Note that we use distinct parameters π , ϕ, η for
p(ȳs | s, v, π), p(s | v, ϕ) and p(v | η), and the parameters
are also a priori independent, p(π , ϕ, η) = p(π)p(ϕ)p(η).
Therefore, the posterior distribution of wO can be factored as

p
(
wO | {ȳisi , si, vi}N

i=1
)

= p
(
π | {ȳisi , si, vi}N

i=1
)

p
(
ϕ | {si, vi}N

i=1
)

p
(
η | {vi}N

i=1
)

,
(11)

and posterior simulation can be conducted independently for
π , ϕ and η. Gibbs transition probabilities are used to update
π (details in Appendix A.2), the R packages bartMachine
(Kapelner and Bleich 2016) and BayesTree (Chipman and
McCulloch 2016) are used to update ϕ, and η is updated by
directly sampling from its posterior η | {vi}N

i=1 ∼ Dir(1 +
δη, . . . , 1 + δη).

4.2. Computation of Expectation of Functionals of
Full-Data Responses

Our interest lies in the expectation of functionals of y, given by

E[t(y)] =
∫

y
t(y)p(y)dy

=
∫

y
t(y)

[∑
s

∫
v

ps(ỹs | ȳs, v)ps(ȳs | v)p(s | v)p(v)dv
]

dy.

(12)

Once we have obtained posterior samples {w(l)
O , l = 1, . . . , L},

the expression (12) can be computed by Monte Carlo integra-
tion. Since the desired functionals are functionals of y, comput-
ing (12) involves sampling pseudo-data based on the posterior
samples. We note that this is an application of G-computation
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(Robins 1986; Scharfstein et al. 2014; Linero and Daniels 2015)
within the Bayesian paradigm (see Appendix Algorithm A.1).

In detail, at step 1, we draw V∗ = vi with probability p(V =
vi | η(l)) = η

(l)
i . At step 2, we draw S∗ by sequentially sampling

from R ∼ Bernoulli[p(S∗ = j | S∗ ≥ j, v)]. If R = 1, take S∗ = j;
otherwise proceed with p(S∗ = j+1 | S∗ ≥ j+1, v), j = 2, . . . , J.
At step 3, we first draw y∗

1 ∼ N
(
a0(v∗, s∗), σ 2

1s∗
)

and then
sequentially draw y∗

j ∼ N
(

a(y∗
j−1, v∗, j, s∗) + ȳ∗T

j−2φjs∗ , σ 2
js∗

)
,

j = 2, . . . , s∗ as in (2), where a0(v∗, s∗) and a(y∗
j−1, v∗, j, s∗) are

generated by a GP prediction rule (Rasmussen and Williams
2006). At step 4, we sequentially draw y∗

j for j = s∗ + 1, . . . , J as
in (7) from the unidentified distributions, now identified using
identifying restrictions. When the ACMV restriction is speci-
fied, step 4 involves generating the random p≥j(yj | ȳj−1, v),
which is defined as

p≥j(yj | ȳj−1, v) =
J∑

k=j
αkj(ȳj−1, v) pk(yj | ȳj−1, v), (13)

and

αkj(ȳj−1, v) = p(S = k | ȳj−1, S ≥ j, v)

= p(ȳj−1 | S = k, v)p(S = k | S ≥ j, v)∑J
k=j p(ȳj−1 | S = k, v)p(S = k | S ≥ j, v)

.

The distribution in (13) is a mixture distribution over patterns.
We sample from (13) by first drawing K = k with probability
αkj, k = j, . . . , J, then drawing a sample from pk(yj | ȳj−1, v).
When the NFMV restriction is specified, step 4 also involves
generating the random p≥j−1(yj | ȳj−1, v), where

p≥j−1(yj | ȳj−1, v)

= αj−1,j−1(ȳj−1, v) pj−1(yj | ȳj−1, v)

+ [1 − αj−1,j−1(ȳj−1, v)]p≥j(yj | ȳj−1, v).

Sampling from p≥j−1(yj | ȳj−1, v) is done by first sampling Y∗
j ∼

p≥j(yj | ȳj−1, v) as in (13). Then draw R ∼ Bernoulli[αj−1,j−1].
If R = 1, apply the location shift (9), otherwise, retain Y∗

j . See
Appendix A.4 for more details of steps 3 and 4.

5. Simulation Studies

We conduct several simulation studies similar to the data exam-
ple to assess the operating characteristic of our proposed model
(denoted as GP hereafter). We simulate responses for J = 6
time points and fit our model to estimate the change from
baseline treatment effect, that is, E[YJ − Y1]. We set the prior
and hyper-prior parameters at standard noninformative choices.
See Appendix A.5 for exact values. For comparison, we consider
four alternatives:
(1, LM) a linear pattern-mixture model that consists of a linear
regression model for ps(yj | ȳj−1, v), a sequential logit model
for p(s | v), and a Bayesian bootstrap model for p(v), as in
Equations (16), (15), and (6), respectively;
(2, LM–) a linear pattern-mixture model without V that consists
of a linear regression model for ps(yj | ȳj−1) and a Bayesian
bootstrap model for p(s);

(3, DPM) a working model for the full data, constructed as a
Dirichlet process mixture of selection models, p∗(y, s, v | ω) =∫

p(y | v, θ1)p(s | y, v, θ2)p(v | θ3)F(dθ) with F following
a Dirichlet process. As suggested in Linero (2017), we use a
linear regression model for p(y | v, θ1) and a sequential logit
model for p(s | y, v, θ2). For p(v | θ3), similar to Shahbaba
and Neal (2009), we assume independent normal distributions
for continuous V ’s, Bernoulli distributions for binary V ’s and
multinomial distributions for categorical V ’s; and
(4, DPM–) a working model for the full data without V , p∗(y, s |
ω) = ∫

p(y | θ1)p(s | y, θ2)F(dθ), which was proposed by
Linero and Daniels (2015) and Linero (2017).

We use noninformative priors for the two parametric models
(1) and (2), and use the default prior choices in Linero and
Daniels (2015) and Linero (2017) for the Dirichlet process mix-
ture models (3) and (4). For each simulation scenario below, we
generate 500 datasets with N = 200 subjects per dataset. See
Appendix Section A.7 for further details on computing times.

5.1. Performance Under MAR

We first evaluate the performance of our model under the
ACMV restriction (MAR). Since this restriction completely
identifies the extrapolation distribution, this simulation study
validates the appropriateness of our observed data model
specification. We consider the following three simulation
scenarios.

Scenario 1. We test the performance of our approach when the
data are generated from a simple linear pattern-mixture model
to assess loss of efficiency from using an unnecessary complex
modeling approach. For each subject, we first simulate Q = 4
auxiliary covariates from a multivariate normal distribution

V iid∼ N(0, 
vv). (14)

We then generate dropout time using a sequential logit model

logit P(S = s | S ≥ s, V) = ζs + VTξ s. (15)

Next, we generate Ȳs from

(
Yj | Ȳ j−1, S = s, V

)
∼ N

(
μjs(Ȳ j−1, V), σ 2

js

)
, for j = 1, . . . , s

where μjs(Ȳ j−1, V)

=
{

VTβ0s + b1s if j = 1
Yj−1ψjs + VTβs + bjs + ȲT

j−2φjs if j ≥ 2
(16)

Finally, the distribution of Ỹs is specified under the ACMV
restriction (for calculating the simulation truth of the mean
estimate).

The parameters in (14)–(16) are chosen by fitting the model
to the test drug arm of the schizophrenia clinical trial (after
standardizing the responses and the auxiliary covariates with
mean 0 and standard deviation 1). See Appendix A.5 for details.
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Table 1. Summary of simulation results under MAR.

Model Bias CI width CI coverage MSE

Scenario 1
GP −0.013(0.004) 0.294(0.002) 0.909(0.012) 0.014(0.000)

LM −0.005(0.004) 0.379(0.001) 0.969(0.007) 0.017(0.000)

LM– 0.004(0.004) 0.385(0.002) 0.969(0.007) 0.018(0.001)

DPM −0.013(0.004) 0.355(0.002) 0.954(0.009) 0.018(0.001)

DPM– −0.009(0.004) 0.343(0.001) 0.947(0.009) 0.016(0.001)

Scenario 2
GP 0.037(0.010) 0.967(0.005) 0.943(0.010) 0.122(0.004)

LM 0.247(0.010) 1.021(0.004) 0.819(0.017) 0.189(0.006)

LM– 0.330(0.010) 1.094(0.005) 0.783(0.018) 0.243(0.007)

DPM 0.183(0.011) 1.188(0.006) 0.924(0.012) 0.192(0.005)

DPM– 0.302(0.011) 1.054(0.006) 0.781(0.019) 0.228(0.008)

Scenario 3
GP −0.005(0.007) 0.666(0.002) 0.958(0.009) 0.057(0.002)

LM 0.008(0.007) 0.705(0.002) 0.968(0.008) 0.061(0.002)

LM– 0.026(0.007) 0.707(0.002) 0.964(0.008) 0.061(0.002)

DPM −0.008(0.008) 0.778(0.002) 0.984(0.006) 0.070(0.002)

DPM– −0.001(0.007) 0.669(0.002) 0.953(0.010) 0.058(0.002)

NOTES: Values shown are averages over repeat sampling, with numerical Monte Carlo standard errors in parentheses. GP, LM, LM–, DPM, DPM– represent the proposed
semiparametric model, the linear regression model with covariates, the linear regression model without covariates, the Dirichlet process mixture model with covariates,
and the Dirichlet process mixture model without covariates, respectively. CI width and coverage are based on 95% credible intervals.

Scenario 2. We consider a scenario where the covariates and
the responses have more complicated structures to test the
performance of our model when linearity does not hold. For
simplicity, for each subject, we simulate Q = 3 auxiliary covari-
ates from V iid∼ N(0, 
vv). The responses and drop out times
are generated in the same way as in scenario 1, but we include
interactions and nonlinearities by replacing V in Equations (15)
and (16) (case j = 1) with V̇ = (V1, V2, V3, V1 × V2, V1 ×
V3, V2 × V3, V2

1 , V2
2 , V2

3 ) and replacing V in Equation (16)
(case j ≥ 2) with V̈ = (V1, V2, V3, V1 × V2, V1 × V3, V2 ×
V3, V2

1 , V2
2 , V2

3 , V1 × Yj−1, V2 × Yj−1, V3 × Yj−1,
√|Yj−1|). The

regression coefficients ξ s, β0s, and βs change accordingly. See
Appendix A.5 for further details.

Scenario 3. We consider a scenario with a very different struc-
ture from our model formulation. In particular, we consider
a lag-1 selection model with a mixture model for the joint
distribution of Y and V . We generate

K ∼ Categorical(π),

�(K) ∼ W−1
(
(ν − J − Q − 1)�

(K)
0 , ν

)
,(

Y
V

)
| K ∼ N

[
μ(K), �(K)

]
, (17)

logit P(S = s | S ≥ s, Y , V) = ζs + ψsYs + VTξ s,

where W−1 ((ν − J − Q − 1)�0, ν) is an inverse-Wishart dis-
tribution with precision parameter ν and mean �0. See Linero
and Daniels (2015) for further details on this type of model.
Formulating a joint distribution as in (17) allows us to impose
complicated relationships between Y and V (Müller, Erkanli,
and West 1996). We consider Q = 3 auxiliary covariates and
5 mixture components. We assume μ(K) and �

(K)
0 correspond

to a linear model of (Y | V) and have the form

μ(K) =
(

μ
(K)
y
0

)
, �

(K)
0 =

(



(K)
yy 


(K)
yv



(K)
vy 
vv

)
.

In particular, we generate μ(K) and �
(K)
0 according to Linero

and Daniels (2015) by fitting the mixture model to the active
control arm of the schizophrenia clinical trial. See Appendix A.5
for further details.

The simulation results are summarized in Table 1. For sce-
nario 1, the true data generating model is the linear regression
model with V , that is, the LM model. The five models have
similar performance in terms of MSE. The 95% credible interval
of the GP model has a frequentist coverage rate less than 95%
due to the prior information, that is, the GP priors and the
AR/CAR priors, being quite strong and the sample size (N =
200) being relatively small. Therefore, the Bayesian credible
interval is unlikely to have the expected frequentist coverage.
The LM– and DPM– models (which ignore V) do not perform
worse than the LM and DPM models. The reason is probably
that the (linear) effects of different V ’s on t(Y) cancel out in the
integration (12). For scenario 2, the true data generating model
does not match any of the five models used for inference. The GP
model significantly outperforms the other models in all aspects.
The result suggests that when the model is misspecified, the GP
model has much more robust performance. We note that the
DPM and DPM– models, although being nonparametric, per-
form worse than the GP model. The reason is that the GP model
is designed specifically to incorporate auxiliary covariates. It
better exploits the structure of the data, which allows it to more
readily capture nonlinear and nonadditive effects and handle
sparse patterns, in particular with small sample sizes. We also
note that when Y and S do not have a linear relationship with
V , ignoring V results in more significant bias than including
V (even mistakenly). For scenario 3, the true data generating
model is a mixture of linear regression models, similar to the
specification of the DPM model. The five models again have
similar performance. For a pattern-mixture model, the marginal
distribution of the responses Y is a mixture distribution over
patterns, which explains the good performance of the GP, LM,
and LM– models. For all the three scenarios, the GP model
always gives narrower credible intervals and has lower bias, in
particular versus the models without auxiliary covariates.
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Table 2. Summary of simulation results for Scenario 2 under MNAR.

Model E(τ̃ ) Bias CI width CI coverage MSE

GP −0.25 −0.024(0.011) 1.032(0.005) 0.957(0.009) 0.133(0.004)

0 0.065(0.011) 1.050(0.005) 0.949(0.010) 0.140(0.004)

0.25 0.157(0.011) 1.069(0.005) 0.909(0.012) 0.165(0.005)

0.5 0.256(0.011) 1.091(0.005) 0.851(0.015) 0.210(0.007)

LM −0.25 0.156(0.011) 1.122(0.005) 0.918(0.012) 0.170(0.005)

0 0.271(0.011) 1.146(0.005) 0.866(0.015) 0.223(0.007)

0.25 0.389(0.011) 1.170(0.005) 0.755(0.019) 0.307(0.009)

0.5 0.513(0.011) 1.199(0.005) 0.626(0.021) 0.424(0.012)

LM– −0.25 0.222(0.010) 1.215(0.005) 0.909(0.012) 0.204(0.006)

0 0.352(0.010) 1.237(0.005) 0.842(0.016) 0.284(0.008)

0.25 0.487(0.010) 1.266(0.006) 0.710(0.020) 0.403(0.011)

0.5 0.626(0.011) 1.300(0.005) 0.528(0.022) 0.567(0.014)

DPM −0.25 0.077(0.011) 1.275(0.006) 0.979(0.006) 0.178(0.004)

0 0.185(0.011) 1.289(0.006) 0.954(0.009) 0.210(0.005)

0.25 0.298(0.011) 1.308(0.007) 0.884(0.014) 0.269(0.008)

0.5 0.415(0.012) 1.332(0.007) 0.795(0.018) 0.358(0.010)

DPM– −0.25 0.179(0.011) 1.167(0.006) 0.932(0.011) 0.184(0.005)

0 0.304(0.011) 1.197(0.006) 0.851(0.016) 0.252(0.008)

0.25 0.435(0.011) 1.234(0.006) 0.712(0.020) 0.357(0.011)

0.5 0.571(0.012) 1.278(0.006) 0.579(0.022) 0.504(0.014)

NOTES: Values shown are averages over repeat sampling, with numerical Monte Carlo standard errors in parentheses. CI width and coverage are based on 95% credible
intervals. The values of E(τ̃ ), −0.25, 0, 0.25, and 0.5, correspond to prior specifications Unif(−0.75, 0.25), Unif(−0.5, 0.5), Unif(−0.25, 0.75) and Unif(0, 1), respectively.

In summary, the semiparametric approach (GP) loses little
when a simple parametric alternative holds, and it significantly
outperforms the other approaches when the model used for
inference is misspecified. The simulation results suggest that
the semiparametric approach accommodates complex mean
models and is more favorable compared with the parametric
approaches and even simple nonparametric alternatives.

5.2. Performance Under MNAR

To assess the sensitivity of our model to untestable assumptions
for the extrapolation distribution, we fit our model to simulated
data under an NFD restriction (8). We consider simulation
scenarios 2 and 3 as in Section 5.1, where the simulation truth
is still generated under MAR. We complete our model with a
location shift (Equations (9) and (10)). Recall that the sensitivity
parameter τ̃ measures the deviation of our model from MAR,
and the simulation truth corresponds to τ̃ = 0. The sensitivity
parameter τ̃ is given four different priors: Unif(−0.75, 0.25),
Unif(−0.5, 0.5), Unif(−0.25, 0.75), Unif(0, 1). All the four pri-
ors contain the simulation truth. Compared to fixing the value
of τ̃ , using a uniform prior conveys uncertainty about the iden-
tifying restriction. For example, using a point mass prior τ̃ = 0
implies MAR with no uncertainty, while using a prior such that
E[τ̃ ] = 0 and var[τ̃ ] > 0 implies MAR with uncertainty.

The simulation results for scenarios 2 and 3 are summarized
in Table 2 and Appendix Table A.3, respectively. When the
sensitivity parameter τ̃ is centered at the correct value 0, the GP
model significantly outperforms the alternatives under scenario
2 and performs as well as the alternatives under scenario 3.
Comparing with the simulation results under MAR (Table 1),
the use of a uniform prior for τ̃ induces more uncertainty on
inference resulting in the wider credible intervals. We also note
that, when τ̃ is not centered at 0, the models using V still
perform better than the model not using V . This is due to the
calibration of the location shift (Equations (9) and (10)). For the
same τ̃ we would have a smaller deviation from ACMV using V

compared to not using V . This property makes the missingness
“closer” to MAR and reduces the extent of sensitivity analysis
with the inclusion of V .

6. Application to the Schizophrenia Clinical Trial

We implement inference under the proposed model for data
from the schizophrenia clinical trial described in Section 1.3.
The dataset was first used in Linero and Daniels (2015). Recall
the quantity of interest is the change from baseline treatment
effect, rx = E[Yi6 − Yi1 | Xi = x], where x = T, A, or
P correspond to treatments under test drug, active control, or
placebo, respectively. We are particularly interested in the treat-
ment effect improvements over placebo, that is, rT −rP and rA −
rP. Also, recall that we have Q = 7 auxiliary covariates including
age, onset (of schizophrenia) age, height, weight, country, sex
and education level. Details of computing specifications and
times, as well as convergence diagnostics, are summarized in
Appendix Section A.7.

6.1. Comparison to Alternatives and Assessment of Model
Fit

We first compare the fit among the proposed model and
alternatives. We consider the linear pattern-mixture models
and Dirichlet process mixture of selection models with and
without auxiliary covariates, as we have used in the simu-
lation studies. We use the log-pseudo marginal likelihood
(LPML) as the model selection criteria, where LPML =[∑N

i=1 log(CPOi)
]
/N, CPOi is the conditional predictive

ordinate (Geisser and Eddy 1979) for observation i and
CPOi = p

(
Ȳ iSi , Si, Vi | {Ȳ i′Si′ , Si′ , Vi′ }N

i′=1,i′ �=i

)
. LPML can be

straightforwardly estimated using posterior samples {ω(l)
O , l =

1, . . . , L} (Gelfand and Dey 1994), without the need to refit the
model N times. A model with higher LPML is more favorable
compared to models with lower LPMLs. We fit the five models to
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Table 3. Comparison of LPML (the second column) and inference results (the third
and fourth columns) under MAR (the first five rows) and CCA (the last row).

Model LPML rT − rP rA − rP

GP −31.93 0.60(−5.07, 7.01) −6.08(−13.90, 1.72)

LM −32.61 −1.26(−8.59, 5.74) −7.24(−15.00, 0.05)

LM– −32.71 −1.94(−9.00, 5.07) −8.13(−15.30, −1.00)

DPM −39.25 0.44(−10.14, 10.42) −7.66(−25.27, 9.67)

DPM– −32.58 −1.69(−8.03, 4.78) −5.44(−12.61, 2.27)

CCA – −3.23(−8.63, 2.18) −3.82(−10.18, 2.55)

NOTES: For the inference results under MAR and CCA, values shown are posterior
means, with 95% credible intervals in parentheses.

the data and calculate the LPML by taking the summation of the
LPML under each treatment arm. The results are summarized
in Table 3. The proposed semiparametric model (GP) has the
largest LPML over the alternatives. In particular, the LPML
improvement over the linear pattern-mixture model without
covariates (LM–) for the GP model is much higher than the LM
and DPM– models. This is not surprising in light of the earlier
simulation results. We also compare inferences on treatment
effect improvements over placebo under the MAR assumption
using the five models, as well as a complete case analysis (CCA)
based on the empirical distribution of the subjects who have
complete outcomes. The results are summarized in Table 3. We
point out the two plus points shifts between the GP model and
the other models for the test drug versus placebo comparison
and for the active drug versus placebo. The DPM model has
the lowest LPML and the widest credible intervals. The poorer
performance of the DPM model is probably due to the small
sample size of each treatment arm (e.g., 45 subjects for the
active control arm) and the relatively large number of covariates
(Q = 7). Inference under the DPM model has large variability
with small sample sizes, and the covariates can dominate the
partition structure (Wade 2013). Further interpretation of the
results of the GP model can be found in Section 6.2. The CCA
(which implicitly assumes missing completely at random) is
inefficient and is generally very unrealistic for longitudinal data.

Next, we assess the “absolute” goodness of fit of the proposed
model. We estimate the cumulative dropout rates and observed-
data means at each time point and under each treatment using
the proposed model by

p(S ≤ j | x) =
∫

p(S ≤ j | v, x)p(v | x)dv, and

E(Yj | S ≥ j, x) =
∫

E(Yj | S ≥ j, v, x)p(v | S ≥ j, x)dv.

We then compare those estimates with results obtained from the
empirical distribution of the observed data (that implicitly aver-
ages over the empirical distribution of the auxiliary covariates).
Despite some small differences, there is no evidence for lack of
fit. The comparison is shown in Figure 1.

6.2. Inference

A large portion of subjects dropout for reasons that suggest
the missing data are MNAR (see Section 1.3). To identify the
extrapolation distribution, we make the NFD assumption (8).
Recall that the NFD assumption leaves one conditional distribu-
tion per incomplete pattern unidentified: ps(ys+1 | ȳs, v, x). To

better identify ps(ys+1 | ȳs, v, x), rather than simply assuming
a location shift (9), we make use of information regarding the
type of dropout. Let Zi = 1 or 0 denote subject i drops out for
informative or noninformative reasons, respectively. We model
Z conditional on observed data responses, pattern, auxiliary
covariates, and treatment with BART,

P(Z = 1 | Ȳs, S = s, V , X = x) = FN(fsx(Ȳs, V)).

Recall FN is the standard normal cdf, and fsx(Ȳs, V) is the sum
of tree models from BART.

The indicator Z is used to help identify ps(ys+1 | ȳs, v, x). We
assume
[
Ys+1 | Ȳs, S = s, V , X, ω

] d= P(Z = 1 | Ȳs, S = s, V , X)

· [
Ys+1 + τs+1 | Ȳs, S ≥ s + 1, V , X, ω

]
+ P(Z = 0 | Ȳs, S = s, V , X) · [Ys+1 | Ȳs, S ≥ s + 1, V , X, ω

]
,

(18)

which is a mixture of an ACMV assumption and a location
shift. We refer to Equation (18) as a MAR/MNAR mixture
assumption. The idea is that, if a subject drops out for a reason
associated with MAR, we impute the next missing value under
ACMV; otherwise, we impute the next missing value by applying
a location shift. The sensitivity parameter τs+1 is interpretable
to subject-matter experts, thus prior on τs+1 can be created.
Suppose two hypothetical subjects A and B have the same aux-
iliary covariates and histories up to time s, and suppose subject
B drops out for an informative reason at time s while subject A
remains on study. Then, the response of subject B at time (s+1)

is stochastically identical to the response of subject A at time
(s+1) after applying the location shift τs+1. As the prior for τs+1,
we assume τs+1 ≥ 0 as we expect subject B would have a higher
PANSS score at time (s + 1) than subject A. The magnitude of
τs+1 is calibrated as in Equation (10),[

τs+1 | Ȳs = ȳs, V = v, X = x
] = τ̃x · �s+1,x(ȳs, v). (19)

We assume a uniform prior on τ̃x, τ̃x ∼ Unif(0, 1), as it is
thought unlikely that the deviation from ACMV would exceed
a standard deviation (Linero and Daniels 2015).

Figure 2 summarizes change from baseline treatment effect
improvements of the test drug and active drug over placebo. We
implement inference under both the MAR and the mixture of
MAR/MNAR (Equations (18) and (19)) assumptions. For the
test drug arm, the treatment effect improvement rT − rP has
posterior mean 0.60 and 95% credible interval (−5.07, 7.01)

under MAR, and posterior mean 0.91 and 95% credible interval
(−5.29, 7.81) under MAR/MNAR mixture. There is no evidence
that the test drug has better performance than placebo. The
MAR/MNAR mixture assumption slightly increases the poste-
rior mean of rT − rP as the test drug arm has a slightly higher
informative dropout rate than the placebo arm (Appendix Table
A.1). For the active drug arm, the treatment effect improvement
rA − rP has posterior mean −6.08 and 95% credible interval
(−13.90, 1.72) under MAR, and posterior mean −6.45 and 95%
credible interval (−14.34, 1.75) under MAR/MNAR mixture.
There appears to be some evidence that the active drug has bet-
ter effect than placebo. The MAR/MNAR mixture assumption
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Figure 1. Cumulative dropout rates (top) and means of the observed data (bottom) over time obtained from the model versus the ones obtained from the empirical
distribution of the observed data. The solid line represents the empirical values, dots represent the posterior means, dashed error bars represent frequentist 95% confidence
intervals, and solid error bars represent the model’s 95% credible intervals.

Figure 2. Change from baseline treatment effect improvements of the test drug (top) and active drug (bottom) over placebo over time. Smaller values indicate more
improvement compared to placebo. The dividing line within the boxes represents the posterior mean, the bottom and top of the boxes are the first and third quartiles, and
the ends of the whiskers show the 0.025 and 0.975 quantiles.

slightly decreases the posterior mean of rA − rP as the active
drug arm has a slightly lower informative dropout rate than the
placebo arm (Appendix Table A.1). Also, in both scenarios, the
MAR/MNAR mixture assumption induces more uncertainty on

the inferences (wider credible intervals), as we have discussed in
Section 5.2.

The same dataset was previously analyzed in Linero and
Daniels (2015), which concluded that there is little evidence that
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the test drug is superior to the placebo and some evidence of
an effect of the active control. Our analysis is consistent with
the previous analyses. See Appendix Table A.4 for a detailed
comparison.

6.3. Sensitivity Analysis

To assess the sensitivity of inferences on treatment effect
improvements (rT − rP and rA − rP) to the informative priors on
the sensitivity parameters (τ̃T, τ̃A and τ̃P), we consider a set of
point-mass priors for each τ̃x along the [0, 1] grid. The detailed
figure showing how inferences on rT −rP and rA −rP change for
different choices of τ̃T, τ̃A, and τ̃P is in Appendix Figure A.2. The
sensitivity analysis corroborates our conclusion that there is no
evidence that the test drug has better performance than placebo.
For all the choices of τ̃T and τ̃P, the posterior probability of
rT − rP < 0 does not reach the 0.95 posterior probability cutoff.
On the other hand, the sensitivity analysis shows that there is
some evidence that the active drug is superior than placebo. For
all the combinations of τ̃A and τ̃P, the posterior probability of
rA − rP < 0 is greater than 0.79. For most favorable values of τ̃A
and τ̃P, the posterior probability of rA − rP < 0 is greater than
0.95, although it only occurs when τ̃A is substantially smaller
than τ̃P. In summary, for all the choices of τ̃x, we do not reach
substantially different results, which improves our confidence
on the previous conclusions.

7. Discussion

In this work, we have developed a semiparametric Bayesian
approach to inference for monotone missing data with non-
ignorable missingness in the presence of auxiliary covariates.
Under the extrapolation factorization, we flexibly model the
observed data distribution and specify the extrapolation distri-
bution using identifying restrictions. We have shown that the
inclusion of auxiliary covariates in the model could in general
improve the accuracy of inferences and reduce the extent of a
sensitivity analysis. We have also shown more accurate infer-
ences can be obtained by using the proposed semiparametric
Bayesian approach compared to using more restrictive paramet-
ric approaches and simple Bayesian nonparametric approaches.

The computational complexity in our application is manage-
able since the schizophrenia clinical trial dataset contains only
204 subjects. With much larger datasets computation becomes
challenging. However, posterior simulation can be conducted
in parallel for fitting the models of the observed responses,
patterns, and auxiliary covariates (see Equation (11)). For
each individual component, see Banerjee, Dunson, and Tokdar
(2013), Hensman, Fusi, and Lawrence (2013), and Datta et al.
(2016) for a scalable GP implementation and Pratola et al. (2014)
for a scalable BART implementation. G-computation is easily
scalable because it requires drawing independent hypothetical
datapoint using each posterior sample.

When the number of auxiliary variables grows, it might be
desirable to perform variable selection. Variable selection can
be done through exploratory analysis, for example, fitting linear
regression or spline regression models. Alternatively, it can be
done more formally for each component of Equation (1). See

Savitsky, Vannucci, and Sha (2011) for variable selection for
Gaussian process priors and Linero (2018) for variable selection
for BART.

A possible extension of our work is to consider continuous
time dropout. The GP is naturally suitable for the continuous
case. Another extension would be more flexible incorporation of
auxiliary covariates beyond the mean. Extending our method to
nonmonotone missing data without imposing the partial ignor-
ability assumption could be done with alternative identifying
restrictions described in Linero and Daniels (2018) and possibly,
a slightly modified semiparametric model. In the setting of
binary outcomes, our method can be naturally extended by
using a probit link. To identify the extrapolation distribution
under NFD, we assume a location shift. Alternatively, we can
consider exponential tilting (Rotnitzky, Robins, and Scharfstein
1998; Birmingham, Rotnitzky, and Fitzmaurice 2003).

Supplementary Materials

Appendix: Appendix showing more details of the schizophrenia clin-
ical trial dataset, prior specification, MCMC implementation, G-
computation, simulation studies, real data analysis, convergence
diagnostics, and computing times.

Python package: Python package bspmis (with an R interface) con-
taining code to perform the simulation studies and real data analysis
described in the article (GNU zipped tar file).
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